Chem 201 – Day 5 WTh, Sept 12-13

Bond Orbital Model
Hybrid Orbitals
Polar Bonds II

Things You Already Know

- Atomic Orbitals
 - Amplitudes
 - Probability = Amp²

- Atomic Orbital Energies
 - n (principal) Q#
 - Distance
 - I (ang. momentum) Q#

Things You Already ... Pt. 2

Bonds result from half-filled AOs

but not C doesn't fit the paradigm?

Things You ... Pt. 3

- If C makes only 2 bonds
 - 2 downhills
- If C "promotes" electron (uphill) then makes 4 bonds
 - 4 downhills

Things ... Pt. 4

- C (and others) use <u>hybrid</u> orbitals
 - Choose hybrids to fit geometry (#ED, steric#)
 - $-4 ED \rightarrow sp^3$ hybridized atom
 - $-3 ED \rightarrow sp^2$ hybridized atom $\rightarrow pictures$
 - $-2 ED \rightarrow sp hybridized atom$

Hybrid Orbital (3 Options)

Hybrid orbital direction → good overlap

АО	sp HO	sp² HO	sp³ HO
2p + + + 2s +	2p 	2p 	sp ³ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
	sp p _y sp p _z		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Examples

- Atom hybridizations
- Orbitals that overlap to make bonds
- Orbitals that hold lone pairs

$$H = N$$

$$H = C = C = C - H$$

$$H = H$$

Combining 2 AO Gives Bonding (BMO) and Antibonding (ABMO)

• Sigma

• Pi

- electron location
- nodes

New Stuff: AO overlap/energy → MO energy

- How does electron energy change?
 - Electrons in BMO vs. ABMO
 - Good vs. bad AO overlap
 - Good vs. bad match in AO energies
- How is this connected with
 - Lewis Octet, 2-electron bond
 - Geometry
 - angles + distances + dihedral angles
 - stiffness & flexibility
 - Polarity
 - Partial Bonds (Resonance)

Electrons Have Lower PE in Molecules

- $A = + B = \rightarrow A B + energy$
 - bond making is always downhill
- Electrons in AO → Electrons in MO + energy
 - Replace "hi E" AO with "low energy" MO

MO Building Strategy Molecules w/ Localized Bonds & Charges

- Build MO model for each electron pair
- Bonds
 - Model combines 2 AO (1 AO from each atom)
 - 2 AO replaced by 2 MO (BMO + ABMO)
- Lone pairs
 - Use existing AO on atom

Two Conditions for Combine/Replace

- For 2 AO to combine/be replaced they
 - must overlap
 - Large amplitudes in same regions of space
 - Core AO too small
 - Valence AO just right
 - Must pay attention to 'positive' & 'negative' overlap
 - must have similar energies
 - Valence orbitals have similar energies
 - Core & valence orbitals do not

Energy Properties of New MO

- Orbital Mixing Diagram
 - Atomic orbital models in red
 - Molecular orbital models in black

 MO Bond = combining half-filled AO makes filled BMO + empty ABMO

Connect with Electron Count

- $H = 1s^1$
- $F = 2s^2 2p_x^2 2p_y^2 2p_z^1$

Connect with Geometry

- Rationalize experimental facts
 - Choose hybrid orbitals that give good overlap
- Predicting geometries
 - Position atoms to get good overlap

BMO CH₄ BMO + ABMO HF

HF ABMO

 CH_4 BMO = $C sp^3 + H 1s$

 $HFMO = F2p \pm H1s$

Propene - Orientation

CH₃C 4σ Bonding LMO

CH₃C 4σ Bonding LMO (EDGE view)

CCH=C $3\sigma + 1\pi$ bonding LMO

$$C = C 1_{\circ} + 1_{\pi}$$

C=*C* both 3σ bonding LMO

