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Bayesian Weighting Schemes are a probabilistic weighting scheme that lever-
age Bayes’ Theorem to use existing experimental data to calculate a weight that
represents the reliability of a specific interaction occurring. Let A and B be two
events in our sample space S. Bayes’ Theorem is stated as

P (A | B) =
P (A,B)

P (B)
=

P (B | A)P (A)

P (B)

The mathematical derivation is as follows. We know that given two events A
and B
P (A,B) = P (A | B)P (B) = P (B | A)P (A). This is because the probability
of both A and B occurring is the same as the probability that A occurs first
and then given this has happened, B occurs or similarly the probability that B
occurs first and given this has happened A occurs. If A and B are independent
of each other then P (B | A) = P (B) or P (A | B) = P (A) but the formula still
holds. By virtue of symbol manipulation we have

P (A,B) = P (A | B)P (B)

=⇒ P (A | B) =
P (A,B)

P (B)

=⇒ P (A | B) =
P (B | A)P (A)

P (B)

This can also be understood more intuitively with the help of an example.
Consider a disease like diabetes. Then there are people who either have the
disease or do not have the disease. They are D+(for having diabetes) or D-(for
not having diabetes) respectively. However, the lab test for whether a patient
has diabetes is not entirely accurate (having some accuracy below 100 percent).
Then we might test a patient that is D+ and get back a positive result which
could be a false-positive or a true-positive. To ascertain whether the test is
worth doing we need to quantify how accurate the test is and we can do this by
calculating P (D+ | +) or the probability that the patient has the disease given
we get a positive result. We can calculate this using Bayes’ Theorem.
Say we take 100 people out of which 45 are D+. We also happen to know that
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for this particular test if a person is D+ we get a positive result 43 percent of
the time.
Then for P (D+ | +) our sample space is the number of people who have tested
positive for diabetes (but this does not necessarily mean that they are actually
D+). Then the probability that a given person from this sample space is actually

D+ would be P (D+,+)
P (+) or the ratio of people who tested positive and have the

disease to the people who tested positive. Now that we have an intuition for
the formula and a motivation for its use, we can use the numbers we made up
above to show how to use Bayes’ Theorem in practice.

P (D+ | +) =
P (+ | D+)P (D+)

P (+)

=
0.43.0.45

P (+ | D+)P (D+) + P (+ | D−)P (D−)

=
0.43.0.45

(0.43.0.45) + (0.57.0.55)

=0.38

We will also need to introduce one more concept that will later help simplify
calculations at the risk of introducing some error into our weighting scheme. In
particular, it will somewhat inflate the weighting schemes but we will attempt
to remedy this by capping all weights at 0.75. This concept is called condi-
tional independence. Consider three events A, B and C. Then A and B are
conditionally independant with respect to C iff:

P (A,B | C) = P (A | C)P (B | C)

That is to say, the probability of B hapenning given C has hapenned does not
affect the probability of A hapenning given C has hapenned. Compare this to
the equation for two independent events and this is more readily clear.

P (A,B) = P (A)P (B)

We can extend this to many more conditionally independent variables as such

P (A1, A2, A3, ...Ak | C) = P (A1 | C)P (A2 | C)P (A3 | C)...P (Ak | C) =
∏
k

P (Ak | C)

1 Setup

To begin understanding the paper we need to understand the different sets
and variables required for a Bayesian Weighting Scheme. We start with an
indicator variable I (also known as a binary random variable). This binary
random variable records whether the interaction between two proteins pi and pj
where i 6= j occurs in the interactome. This means that even if the interaction
does not occur in a particular signalling pathway or is not an edge in any of the
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k-shortest paths, if the two proteins are known to interact, I = 1 and I = 0 if
they do not interact in the same sense. Mathematically,

I =

{
1 if the interaction occurs
0 if the interaction does not occur

}
Then we have an interaction vector E where E can be thought of as a 1 ∗ n

vector or as a list of n elements. Entries of E are given by Ek’s which is an
indicator variable that records whether a particular evidence type k suggests
the interaction happens or not. Then similarly to I,

Ek =

{
1 if evidence type k suggests the interaction occurs
0 if evidence type k suggests the interaction does not occur

}
So consider a simplified example of what E might look like. We might have

four types of evidences for a particular interaction between proteins pi and pj .
Then if E1 and E2 suggest the interaction does happen then and E3 and E4

suggest that it does not, then E1 = E2 = 1 and E3 = E4 = 0 and E = [1, 1, 0, 0].
Notation wise when we write P (E) we mean to say that this is the probability
that E equals the one particular interaction vector.
Then we have the necessary set up and can begin to use data to calculate a
probability that an interaction happens given the interaction has a particular
interaction vector i.e P (I | E). We cannot do so directly but Bayes’ Theorem
will allow us to do so indirectly using experimental data.

2 Calculating P (I | E)

We begin by constructing a set of true-positives and true-negatives using GO
terms to construct a gold-standard positive and negative set. This means that
a protein pair is placed in the true positive set P if both are co-annotated by
at least one GO term. From the remaining protein pairs, 10. | P | proteins are
randomly selected to be N , the true negative gold standard. These sets,P and N
are constructed so there is no overlap between them, that is to say there are no
elements in common between the two sets. In experimental terms this means we
have constructed two sets of terms such that there are no false-positives or false-
negatives. We then make the assumption that true positives in the remaining
unmarked protein pairs occur at the same rate as true positives occur in the
set of true positives and true negatives. This is to say that the sample of true
positives and true negatives is held to be representative of the entire interactome
considered. Then the probability that a randomly selected pair is a positive or

that the interaction occurs is |P |
|P∪N | the total number of positives over the total

number of proteins pairs (both positive and negative). Similarly the probability

that a randomly selected pair is negative is |N |
|P∪N | . Using these probabilities let

us reconsider our indicator variable I and observe that
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P (I = i) =


|P |

|P∪N | if i = 1

|N |
|P∪N | if i = 0

 (1)

Then consider a set Zk which is the set of proteins that have been seen
interacting during an experiment or evidence type k. Then similarly we begin
to compute P (Ek = e | I = i) . This is the probability that we have a particular
value for Ek given that the interaction occurs or given that the interaction
does not occur. For example, we might observe an interaction to occur but
evidence type k might suggest that it does not. There are three other possible
combinations for e and i. They are illustrated below.

P (Ek = e | I = i) =



|P∩Zk|
|P | if i = 1, e = 1

|N∩Zk|
|N | if i = 0, e = 1

|P\Zk|
|P | if i = 1, e = 0

|P\Zk|
|P | if i = 0, e = 0


(2)

If i = 1 and e = 1 for a given protein pair then this protein pair both does
interact and has been observed to interact. If i = 1, e = 0 then the protein
pair does interact but has not been observed to interact under evidence type
k. If i = 0, e = 0 then the interaction neither occurs nor has been observed to
interact under evidence type k. If i = 0, e = 1 then the interaction does not
occur in the interactome but there is evidence by experiment type k to suggest
it could.
Using our probabilities of P (I = i) and P (Ek = e | I = i) then we can begin to
apply Bayes’ Theorem and all of the set up we have performed. Then let the
cost of an edge be

cuv = P (I = 1 | E)

= P (E|I=1)P (I=1)
P (E)

= P (E|I=1)P (I=1)
P (E)

= P (E|I=1P (I=1)
P (E,I=0+P (E,I=1)

=
P (I=1)

∏
k P (Ek|I=1)

P (I=0)
∏

k P (Ek|I=0)+P (I=1)
∏

k P (Ek|I=1)
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Then we can calculate P (I | E) in terms of probabilities we already know how to
calculate and we can weight the interactome probabilistically using experimental
data.
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