The web is loaded with videos explaining optical activity and demonstrating polarimeters of various types (see Sorrell, Fig. 4.3, p. 114). Here are two SHORT clever videos from David Whyte (and his cheeky daughter?):
- Home made polarimeter by David Whyte. (https://youtu.be/HP14LAEy9BY) Modern computer displays rely on liquid crystals and the light emitted by an LCD is polarized. David displays a yellow rectangle on his laptop screen so the yellow light emitted by the screen is a good approximation of polarized monochromatic (single wavelength) light. Next he loads some syrup (sucrose + water) into a transparent can on top of the screen. Finally, he films the screen+syrup setup through some polarized sunglasses and rotates the glasses back and forth. Things to notice:
- When he films the screen+syrup setup without the glasses in place, everything looks yellow and equally bright. You can’t see any effect of sucrose on the angle of polarization because your eyes are not sensitive to polarization angles.
- The first time he puts the sunglasses between the camera and the setup (0:31), the syrup goes black while the screen stays bright. Clearly, the syrup is rotating the plane of polarization, i.e., the light coming out of the syrup has a different angle from the rest of the screen. The syrup looks black because the light coming out of the syrup is rotated 90º from the sunglasses’ polarization.
- Three seconds later (0:34) he has rotated the sunglasses so that the screen goes black and the syrup is light. Again, this proves that the syrup is rotating the plane of the polarized light coming out of the screen. If the syrup were not optically active, the syrup and the screen would all go black simultaneously.
- Home made polarimeter, #2 by David Whyte. https://youtu.be/CJS6CwL2eQU The previous video showed that syrup (sucrose) rotates plane-polarized light. This video shows that the angle is correlated with the path length of the solution. The same basic setup is used: computer screen (light source + polarizer #1) + sample + sunglasses (polarizer #2), but there are four samples: W (pure water), 1 (short layer of syrup), 2 (medium layer of syrup), 3 (tall layer of syrup). Also, in this video he holds the sunglasses steady and rotates the screen. Things to notice:
- Pure water, W, is achiral and optically inactive. Notice that the color and brightness of W matches that of the surrounding screen. Water has no effect on the angle of polarization.
- Syrup is optically active, but the amount of optical activity (the amount the sucrose sample rotates the plane of polarization) depends on the amount of sucrose in the light beam. The longest (tallest) sample, 3, deviates the most from pure water, i.e., it has the greatest effect on the plane of polarization. The shortest sample, 1, behaves almost identically to pure water. 2, as you might expect, falls in between.
- This video looks at a full 360º rotation of the screen polarization relative to the sunglasses. The screen should go dark twice during a full rotation: once when the light hitting the sunglasses is polarized 90º from the sunglasses’ polarization, and again when the light is polarized 270º from the sunglasses’ polarization. See if you can spot these two “go black” spots for each sample. (Hint: use the arrow that Whyte has drawn on the screen to read the angle; you should see a sample go black a second time when the arrow has reversed its direction from the first time the sample went black).